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For all odd primes N up to 500000, we compute the action of the Hecke operator T2 on the space
S2(00(N ),Q) and determine whether or not the reduction mod 2 (with respect to a suitable basis) has 0
and/or 1 as eigenvalues. We then partially explain the results in terms of class field theory and modular
mod-2 Galois representations. As a byproduct, we obtain some nonexistence results on elliptic curves
and modular forms with certain mod-2 reductions, extending prior results of Setzer, Hadano, and Kida.

1. Introduction

1.1. Computations and theorems. For N a positive integer and k a positive even integer, let Sk(00(N ),Q)

be the space of weight-k rational cusp forms for the group 00(N ), equipped with the Hecke operators Tp

for all primes p not dividing N. For N prime with 2< N < 500000, we computed the matrix of T2 acting
on some basis of S2(00(N ),Q); this was done using Cremona’s implementation of modular symbols, as
documented in [8], via the eclib package in Sage [30]. We then used the m4ri package in Sage, which
implements the “method of four Russians” [1, Chapter 9], to compute the rank of the reductions of T2

and T2− 1 mod 2. These computations took a few CPU-months; we did not make an accurate costing
because our method is almost certainly not optimal (see below).

From this data, we observed the following behavior of the mod-2 matrix of T2.

• For N ≡ 3 mod 8, the eigenvalue 0 always occurs if N > 3.

• For N ≡ 1, 3, 5 mod 8, the eigenvalue 1 always occurs if N > 163.

• For N ≡ 1 mod 8, the eigenvalue 0 occurs with probability 16.8%.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs with probability 42.2%.

• For N ≡ 7 mod 8, the eigenvalue 0 occurs with probability 17.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs with probability 47.9%.
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These results can be partially explained (see Section 7) by combining the Cohen–Lenstra heuristics [7]
with a detailed count of the maximal ideals of the mod-2 Hecke algebra with residue field F2. The bulk
of the paper is devoted to making these counts (Theorems 2 and 12) using class field theory plus the
theory of modular Galois representations. As a byproduct, we recover some nonexistence results of
Setzer [34], Hadano [12], and Kida [18] for elliptic curves of conductor N or 2N with N prime, derived
using a totally different approach: a diophantine analysis of discriminants of Weierstrass equations due
to Ogg [26].

For N < 200000, we also computed the multiplicities of 0 and 1 as generalized eigenvalues of the
mod-2 reduction of the matrix of T2. (These multiplicities are independent of the choice of basis.)
These are somewhat more complicated to analyze because the self-adjointness of Tp with respect to the
Petersson inner product does not guarantee diagonalizability mod `; hence the computed multiplicity is
an upper bound for the count of maximal ideals, and either both are zero or both are nonzero, but more
work is needed to explain the full multiplicity. See Conjecture 13 for a step in this direction; existing
work on failure of multiplicity one in characteristic 2 (e.g., [19]) suggests that even conjecturally, it may
be difficult to formulate a more precise conjecture without allowing for some sporadic exceptions.

1.2. Motivation: tabulation of rational eigenforms. Although these results may be of independent in-
terest, for context we indicate how they were motivated by some considerations around the tabulation
of rational eigenforms. Via the modularity theorem, isogeny classes of elliptic curves of conductor N
correspond to rational newforms in S2(00(N ),Q); finding rational eigenforms within S2(00(N ),Q) is the
rate-limiting step in Cremona’s algorithm for tabulating rational elliptic curves of a given conductor, as
documented in [8] and executed to date for N ≤ 400000 [21]. (The table is also available in PARI/GP [27],
Magma [25], and Sage [30].)

Within this step of Cremona’s algorithm, the rate-limiting substep is the computation of the kernel of
Tp − ap where p is the smallest prime not dividing N and ap runs over all integers with |ap| ≤ 2

√
p.

Once this step is done, the resulting kernels are typically of much smaller dimension than the original
space, so it is of negligible difficulty to diagonalize the restrictions of enough additional Hecke operators
to isolate all one-dimensional joint eigenspaces. (The fact that this catches all rational eigenforms is a
consequence of self-adjointness and strong multiplicity one.)

Recall that linear algebra over Q is not generally performed using generic algorithms due to interme-
diate coefficient explosion; it is better to use a multimodular approach in which one does linear algebra
over F` for various small primes ` and reconstructs the final answer using the Chinese remainder theorem.
In Cremona’s implementation of his algorithm, he uses only the single prime `= 230

− 35; to date, this
has provided enough information to identify the kernel of Tp − ap.

The present work was motivated by a desire to understand the following question: to what extent (if
any) can this algorithm be accelerated using linear algebra over F` for a single small `, such as `= 2?
Of course, one does not expect the result of computing the kernel of Tp − ap mod ` to provide enough
information to identify the kernel over Q. However, for N large, the probability that S2(00(N ),Q) admits
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any rational newforms is relatively small: by analogy with the corresponding estimate for elliptic curves
sorted by naïve height [5] or Faltings height [15], one expects that only O(X5/6) of positive integers up
to X occur as levels of rational newforms. Consequently, there are likely to be many values of N for
which Tp−ap has no kernel at all over Q; if this remains true mod `, then finding this out would provide
an early abort mechanism. A more sophisticated early abort strategy would be to calculate not the rank
of Tp − ap, but rather

(contribution from level N newforms)
= (eigenvalue multiplicity of 0)−

∑
d<N , d|N

τ(N/d)(contribution from level d newforms),

where τ(n) is the number of divisors of n; an early abort occurs if this contribution modulo ` is zero.
The restriction to N prime in this paper was made for several reasons; notably, a key role in the

theoretical analysis is played by Eisenstein ideals, which are well understood for N prime by the work of
Mazur [22] but remain largely mysterious for general N (but still tractable for squarefree N, as in the work
of Yoo [39]). However, for N prime there is no need to optimize Cremona’s method: the method used by
Bennett and Rechnitzer [2] to extend the tables of Stein and Watkins [35] is sufficient to compute (rigor-
ously) a table of elliptic curves of all prime conductors up to 1010. Nonetheless, we hope that a thorough
understanding of the present situation will provide a blueprint for extending the analysis; see below.

1.3. Additional questions. We conclude this introduction with discussion of further work to be done in
this direction. To begin with, our final analysis of the experimental data remains somewhat incomplete
because our analysis of mod-2 Galois representations focuses on the ones with dihedral image; while
representations with larger image are somewhat rarer, they do appear to make measurable contributions
which we would like to see quantified.

In addition, one could repeat the analysis in other situations: one could treat nonprime N, work modulo
another prime `, consider Tp for another p, and/or work in some higher weight k. While all of these
variants are of intrinsic interest, we would like to point out some developments in the computation of
modular forms which draw attention to some particular cases. (Separately, the case of N prime, `= 2,
p > 2, k = 2 has arisen in the context of error-correcting codes [28].)

We first reconsider our choice of method to compute the Hecke actions on Sk(00(N ),Q). The method
of modular symbols is implemented in Magma and Sage, and in a specially optimized form for k = 2
in Cremona’s eclib. The approach used in PARI/GP [27] is based on trace formulas. However, for a
large-scale tabulation of rational eigenforms, we believe the best approach is the method of Birch [3]
as extended by Hein, Tornaría, and Voight [13] (see also [37]). Birch’s original method is a variant of
the Mestre–Oesterlé method of graphs [24] in the case where k = 2 and N is prime; Birch (partially)
described his method for k = 2 and N squarefree, in terms of reduction of definite quadratic forms,
while Hein, Tornaría, and Voight generalize to higher weight by considering the action of SO(3) on
nonstandard representations. Hein [14] has implemented the method in C++ for k = 2 and N squarefree;
experimenting with this code reveals several computational benefits.

• It is extremely efficient in practice.
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• The matrix of Tp is guaranteed1 to be integral (but not symmetric) and optimally sparse, with at
most p+ 1 nonzero entries per row.

• It separates eigenspaces for the Atkin–Lehner involutions, thus reducing the complexity of the re-
sulting linear algebra.

• It removes some oldforms, thus again simplifying the linear algebra. For example, if N is squarefree
with an odd number of prime factors, then no oldforms appear; if N is squarefree with an even
number of prime factors, one gets an old subspace from the smallest prime factor of N. For general N,
one sees oldforms from levels which differ from N by a square factor.

The early abort strategy of computing ranks modulo ` is potentially even more effective when using
the method of Birch, Hein, Tornaría, and Voight, due to the separation of Atkin–Lehner eigenspaces.
However, in order to realize this benefit one must probably take ` > 2, as for ` = 2 the two possible
eigenvalues of an involution come together, so there is the chance of some problematic (for our purposes)
interaction between the eigenspaces. An analysis of the case k = 2, N prime, `= 3 would be a natural
variant of what we have done here.

Moreover, for k > 2 the early abort strategy may be of even greater value, as rational newforms in
Sk(00(N ),Q) correspond to Galois representations for which there is no systematic construction avail-
able. Indeed, there is some evidence that there are only finitely many such forms for k > 4 [29]; extending
previous exhaustive searches, particularly in the borderline case k = 4, would be a natural next step.

2. Elliptic curves and their 2-torsion

For K a quadratic extension of Q, write OK for its ring of integers, Cl(K ) for its class group, h(K )
for its class number, and H(K ) for its Hilbert class field. Write Cl(K , a) for the ray class group of K
with conductor a, and h(K , a) for the order of Cl(K , a). Let p(K ) be a prime of K above (2), and write
〈p(K )〉 ⊂ Cl(K ) for the subgroup that p(K ) generates. If K is real, let u(K ) be a fundamental unit of K.

For E an elliptic curve, write NE for the conductor of E . Let ρE,2 : GQ,2NE → GL2(F2) be the mod-2
Galois representation associated to E ; it factors through G KE where KE :=Q(E[2]) has Galois group
contained in GL2(F2)∼= S3. By considering the subgroups of S3 and their embeddings in GL2(F2), we
see that exactly one of the following alternatives holds.

(i) E[2] is reducible as a Galois module, and KE is either Q or a quadratic extension of Q unramified
away from 2N. In other words, E has at least one rational 2-torsion point.

(ii) E[2] is irreducible over F2 but becomes reducible over F4, and KE is a cubic Galois extension of Q.
In other words, GQ permutes the three nonidentity points of E[2] cyclically.2

(iii) E[2] is absolutely irreducible over F2, and KE is an S3-extension of Q.
1This is not true in Cremona’s setup because projecting onto the minus part of the space of modular symbols could in

principle introduce a denominator of 2; we have yet to observe this.
2This happens, for example, for both isogeny classes of elliptic curves of conductor 196 (lmfdb.org/EllipticCurve/Q/196/)

and isogeny classes a and c of conductor 324 (lmfdb.org/EllipticCurve/Q/324/).

http://www.lmfdb.org/EllipticCurve/Q/196/
http://www.lmfdb.org/EllipticCurve/Q/324/
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Proposition 1. If NE = 2r M for some odd squarefree integer M and some r ≥ 0, then E[2] is either
reducible or absolutely irreducible.

Proof. Suppose to the contrary that KE is cubic. Let ` be an odd prime dividing NE . Since ` divides NE

exactly once, E has multiplicative reduction at `; hence the action of GQ`
on the 2-adic Tate module of E

is reducible, and likewise for the action on E[2]. However, the (unique) order-3 subgroup of GL2(F2) is{( 1
0

0
1

)
,
( 0

1
1
1

)
,
(1

1
1
0

)}
, which acts irreducibly. Therefore the image of GQ`

is trivial in GL2(F2), and so KE

is unramified at `. Since this is true for every odd ` dividing NE , KE is ramified at most at 2. But there
are no cubic extensions of Q unramified outside 2: the maximal abelian extension unramified outside 2
is Q(ζ2∞), whose Galois group is pro-2. �

In light of Proposition 1, when NE is squarefree, we say that E is reducible if E[2] is a reducible
representation of GQ and K -dihedral, or simply dihedral, if KE is an S3-extension containing a quadratic
extension K of Q.

Recall that E is ordinary (at 2) if a2(E) is odd, and supersingular (at 2) otherwise. By theorems
of Deligne and Fontaine (see Theorem 11), E is ordinary at 2 if and only if ρE,2|GQ2

is reducible. In
particular, reducible elliptic curves are ordinary.

The following theorem will be proved in Section 5.

Theorem 2. Let N be an odd prime.

(i) Every dihedral elliptic curve of conductor N is either Q(
√

N )-dihedral or Q(
√
−N )-dihedral.

(ii) Ordinary dihedral elliptic curves: For K =Q(
√
±N ), if

3 -
h(K )

#〈p(K )〉
,

then there are no ordinary K -dihedral elliptic curves of conductor N.

(iii) Supersingular elliptic curves:

(a) If N ≡ 1, 7 mod 8, then there are no supersingular elliptic curves of conductor N.
(b) If N ≡ 3 mod 8, then every supersingular elliptic curve of conductor N is Q(

√
−N )-dihedral.

(c) If N ≡ 5 mod 8, then every supersingular elliptic curve of conductor N is Q(
√

N )-dihedral.
If u(K ) 6≡ 1 mod 2OK , then there are no supersingular elliptic curves of conductor N.

(iv) Reducible elliptic curves: If N 6≡ 1 mod 8, then there are no reducible elliptic curves of conductor N.

For prime N and K = Q(
√

N ), the order of p(K ) in Cl(K ) divides 2 unless N ≡ 1 mod 8, so if
N ≡ 3, 5, 7 mod 8 then the condition 3 - (h(K )/#〈p(K )〉) in (ii) is equivalent to 3 - h(K ). Similarly, if
N 6≡ 7 mod 8 and K =Q(

√
−N ), then the condition 3 - (h(K )/#〈p(K )〉) in (ii) is equivalent to 3 - h(K ).

Theorem 2 includes a theorem of Setzer [34, Theorem 1]: if N is a prime congruent to 1 or 7 mod 8
such that 3 - h(Q(

√
±N )), then every elliptic curve of conductor N is reducible. With similar methods,

we also recover the following results of Hadano [12, Theorems II and III] and Kida [18, Theorem 3.3].
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(Kida’s original statement requires N − 64 to not be a square; for N 6= 17, this is equivalent to existence
of a reducible elliptic curve of conductor N [34, Theorem 2]. See also [12, Theorem I].)

Theorem 3 (Hadano). Let N be a prime such that 3 - h(Q(
√
±N )), h(Q(

√
±2N )).

(i) If N ≡ 1, 7 mod 8, then every elliptic curve of conductor 2N is reducible.

(ii) If N ≡ 3, 5 mod 8, there are no elliptic curves of conductor 2N.

Theorem 4 (Kida). Let N be a prime such that none of

h(Q(
√
±N )), h(Q(

√
(−1)(N−1)/2 N ), 2)

is divisible by 3. Then every elliptic curve of conductor N is reducible.

3. Representation theory preliminaries

To prepare for the proof of Theorem 2, we make some representation-theoretic calculations. Fix a prime p
and a finite field F of characteristic p, let G be any group, and let ρ : G → GL2(F) be a semisimple
representation. Let ρ(G) ⊂ GL2(F) and ρ̃(G) ⊂ PGL2(F) be the image and projective image of ρ,
respectively. Then exactly one of the following statements holds [31, Propositions 15–16].

(i) Reducible case: ρ̃(G) is a cyclic group Cn . In other words, ρ is reducible (over F), a sum of two
characters χ ⊕χ ′, and the order of χ/χ ′ is n.

(ii) Dihedral case: ρ̃(G) is a dihedral group Dn of order 2n with n ≥ 2. In other words, ρ is irreducible
but there is an index-2 subgroup H of G, determined uniquely if n ≥ 3, so that ρ|H splits as a sum
of two characters.

(iii) Exceptional case: ρ̃(G) is isomorphic to A4, S4, or A5.

(iv) Big-image case: ρ̃(G) contains PSL2(Fq) for some q ≥ 5, but ρ(G) 6= SL2(F5).3

Call ρ reducible, dihedral, exceptional, or big-image accordingly.

3.1. The dihedral case in detail.

3.1.1. Inducing a character. Let H ⊂ G be a normal subgroup. Any character ψ : H→ F× to a field F
may be twisted by any g ∈ G to obtain a new character gψ , defined by gψ(h) := ψ(g−1hg). Because ψ
factors though an abelian quotient of H, one can show that gψ depends only on the class g of g in G/H .
We therefore write gψ for the twist of ψ by g ∈ G/H .

Now suppose that H ⊂G has index 2 and take ρ to be the induced representation IndG
H ψ :G→GL2(F).

Let εH be the (at most quadratic) character of G that takes H to 1 and G−H to−1. Let g be the nontrivial
element of G/H . The following are well known (e.g., see [32, 7.2.1]):

(i) ρ|H = ψ ⊕ gψ ;

3The restrictions are explained by exceptional isomorphisms for small primes: SL2(F2) ∼= D3, PSL2(F3) ∼= A4,
PGL2(F3)∼= S4, PSL2(F4)= PGL2(F4)∼= A5, and PSL2(F5)∼= A5.
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(ii) ρ is an irreducible representation of G if and only if ψ 6= gψ ;

(iii) det ρ = εH ·ψ(VerG
H ), where VerG

H : G→ H ab is the Verlagerung (transfer) homomorphism taking
x ∈ G to xg−1xg;4

(iv) ρ̃(G)∼= Dn , where n is the order of gψ/ψ (assuming ψ has finite order).

3.1.2. Dihedral representations. Conversely, suppose that ρ : G→ GL2(F) is a dihedral representation
with ρ̃(G)= Dn . If n ≥ 3, then Dn contains a unique index-2 subgroup isomorphic to Cn .5 Let H ⊂ G
be the inverse image of that cyclic subgroup under the map G→ GL2(F)→ PGL2(F). Since ρ̃(H) is
a cyclic group, ρ|H is a reducible representation, a sum of two characters, each defined over an at-most-
quadratic extension of F. Let ψ : H → F× be one of these characters. Then Frobenius reciprocity and
dimension considerations guarantee that the map IndG

H ψ→ ρ induced by ψ→ ρ|H is an isomorphism.

3.1.3. The image of a dihedral representation. Suppose further that ρ is a faithful dihedral representation
of G. With H, ψ , and gψ as above, we have the following:

Lemma 5. (i) kerψ ∩ ker gψ = 1.

(ii) H is an abelian subgroup of G.

(iii) If kerψ ⊂ H is normal in G, then ψ is faithful, so H is cyclic.

The proofs are straightforward but not completely standard, so we include them.

Proof. (i) We know that ρ|H = ψ ⊕ gψ and we have assumed that ker ρ is trivial.

(ii) The commutator of any two elements of H is in both kerψ and ker gψ ; now use part (i).

(iii) By part (ii), G/H acts on H by conjugation, and ker gψ is the image of kerψ under the action of
the nontrivial element. Now use (i). �

Note that even if ψ is faithful and H is finite cyclic of order n and the sequence

1→ H → G→ G/H → 1

splits (i.e., there is an order-2 element in G− H ), we cannot conclude that G is isomorphic to Dn: the
dicyclic groups give a counterexample for every even n.

3.1.4. Translating to Galois representations. Let ρ : GQ→ GL2(F) be a finite-image dihedral repre-
sentation such that |ρ̃(GQ)| ≥ 6. Let K be the quadratic extension of Q for which [ρ̃(GQ) : ρ̃(G K )] = 2,
so that ρ|G K is reducible. Let ψ : G K → F× be a character appearing in ρ|G K and let Lψ be the fixed
field of kerψ . If Lψ/Q is Galois, then Lψ = ker ρ. Otherwise, writing Gal(K/Q)= {1, σ }, we obtain
the twist σψ ; its fixed field Lσψ is the image σ̃ (Lψ)⊂Q for any lift σ̃ of σ to GQ, and ker ρ =: M is
the compositum Lψ Lσψ (inside Q). In particular, it is clear that M is an abelian extension of K.

4One can show that ψ(VerG
H ) takes x ∈ H to ψ gψ(x) and takes x ∈ G− H to ψ(x2).

5For n = 2, there are three such subgroups. But n is the order of a character to F×p (see Section 3.1.1(iv)) and hence prime
to p; as we will later restrict to p = 2, we ignore n = 2 here.
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3.1.5. Artin conductor formulas. We will also make use of the following formula (see, for example, [36,
Corollary 1]) for the Artin conductor of IndQ

K ψ in terms of the Artin conductor of ψ :

cond(IndQ
K ψ)= |1K |N K

Q (condψ), (3-1)

where N K
Q

is the field norm and 1K is the discriminant of K.
If F is a finite extension of Fp or a p-adic field, we will denote the tame or prime-to-p Artin conductor

by cond(p). The analogous formula holds:

cond(p)(IndQ
K ψ)= |1

(p)
K |N

K
Q (cond(p) χ). (3-2)

Here 1(p)K is the prime-to-p part of the discriminant of K.

3.2. Mod-2 dihedral Galois representations. From now on, we work with F = F, a finite extension
of F2. Suppose that ρ = IndQ

K ψ : GQ→ GL2(F) is a K -dihedral representation for some quadratic K
over Q and ray class (i.e., Hecke) character ψ : G K → F×.

3.2.1. Implications of det ρ = 1. Again, let Lψ be the fixed field of kerψ .

Lemma 6. If det ρ = 1, then Lψ is Galois over Q.

Proof. If det ρ = 1, then considering det ρ on the subgroup G K , we see that σψ = ψ−1. Therefore Lψ is
also the fixed field of ker σψ , which means that Lψ/Q is Galois and Lψ is the fixed field of ker ρ. �

3.2.2. The conductor of ψ . Let a be the conductor of ψ . Since we work in characteristic 2, we are only
interested in odd-order ψ here; we thus ignore consideration of any real places of K and view a as an
integral ideal of K. We have a standard exact sequence relating the class group Cl(K ) to the ray class
group Cl(K , a):

O×K → (OK /a)
×
→ Cl(K , a)→ Cl(K )→ 1. (3-3)

Lemma 7. If a= qn is a power of a prime of OK lying over a prime q of Z, then

[Cl(K , a) : Cl(K )] divides
{
(q − 1)qk for some k ≥ 0 if (q) splits or ramifies in K,
(q2
− 1)qk for some k ≥ 0 if (q) is inert in K.

Proof. This is immediate from sequence (3-3) in light of the exact sequence

1→ 1+ qnOK → 1+ qOK → (OK /q
n)×� (OK /q)

×
→ 1, (3-4)

combined with the fact that 1+ qOK is pro-q . �

Corollary 8. (i) If 2 ramifies or splits in K, then any Hecke character ψ : G K → F× of modulus 2nOK

has trivial conductor and hence factors through Cl(K ).

(ii) If 2 is inert in K, then any Hecke character ψ : G K → F× of modulus 2nOK has conductor dividing
2OK and hence factors through Cl(K , (2)).

Proof. (i) If 2 ramifies in K, then this follows immediately from Lemma 7, since (q − 1)qn is a power
of 2. If 2 splits as 2OK = pp′, then argue as in Lemma 7, noting that by the Chinese remainder theorem,
(OK /(2OK )

n)× = (OK /p
n)×× (OK /p

′n)×.
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N mod 8
K =Q(

√
N ) K =Q(

√
−N )

(2) in K h(K ) #〈p(K )〉 (2) in K h(K ) #〈p(K )〉

1 splits odd varies ramifies even > 4 2

3 ramifies odd 1 inert odd 1

5 inert odd 1 ramifies 2·odd 2

7 ramifies odd 1 splits odd varies

Table 1. Class number parity and splitting of 2 in Q(
√
±N ) for N prime.

(ii) From the proof of Lemma 7 and (3-4), it’s clear that the only odd contribution to [Cl(K , (2)n) :Cl(K )]
comes at n = 1. �

3.2.3. The local behavior of ρ. Fixing an embedding ι : GQ2 ↪→ GQ, we can consider the restriction ρ2

of ρ to GQ2 . Let p be the prime of OK above 2 corresponding to ι, and let ψ2 be the restriction of ψ
to G Kp . Then ρ2 is reducible if and only if either

(i) 2 splits in K, or

(ii) 2 is inert or ramified in K and σψ2=ψ2. (Note that σ is in the decomposition group at p in this case.)

3.3. Mod-2 dihedral Galois representations of prime conductor. Retaining the notation (F, ρ, K, ψ)
from the previous subsection, we now additionally suppose that N is an odd prime and ρ has (tame Artin)
conductor N. The induced tame conductor formula (3-2) guarantees that either

1
(2)
K = (1), N K

Q (cond(2) ψ)= (N ) or 1
(2)
K = (N ), N K

Q (cond(2) ψ)= (1).

We analyze each scenario in turn.

3.3.1. First scenario: 1(2)K = (1) and N K
Q
(cond(2) ψ)= (N ). Here, K =Q(i) or Q(

√
±2 ), and N splits

in K as (N )= qq′ with cond(2) ψ = q. Hence ψ is a ray class character of conductor qa for some ideal a
of K divisible only by primes above 2.

Lemma 9. In this scenario, det ρ : GQ→ F× is a nontrivial character.

Proof. Since condψ is not Galois-invariant, Lψ is not Galois over Q. Lemma 6 then implies the desired
conclusion. �

3.3.2. Second scenario: 1(2)K = (N ) and N K
Q
(cond(2) ψ) = (1). Here, K = Q(

√
±N ) or Q(

√
±2N )

and ψ is a ray class character of conductor dividing (2OK )
n.

Corollary 10. In this scenario, ψ factors through Cl(K ) unless

• N ≡ 5 mod 8 and K =Q(
√

N ) or

• N ≡ 3 mod 8 and K =Q(
√
−N ),

in which cases ψ factors through Cl(K , (2)).

Proof. Combine Corollary 8 with the ramification of 2 in Q(
√
±N ): see Table 1. �
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3.4. Mod-2 modular Galois representations of weight 2. We now suppose that N is an odd integer (not
necessarily prime) and f ∈ S2(00(N ),Z2) is a normalized weight-2 Hecke eigenform of level N. By
a theorem of Breuil, Conrad, Diamond and Taylor [4], such f with coefficients in Q correspond pre-
cisely to isogeny classes of elliptic curves E of conductor N, with the `-th Fourier coefficient satisfying
a`( f )= `+1−#E(F`) for all primes ` - 2N. As for elliptic curves, the form f is ordinary or supersingular
according to whether a2( f ) is a unit in Z2. Reducing any GQ-stable lattice of the Galois representation
associated by Eichler and Shimura to f , we obtain a mod-2 representation ρ f : GQ→ SL2(F2) which for
prime ` - 2N is unramified at ` and satisfies Tr ρ f (Frob`)= a`( f ), where a`( f ) ∈ F2 is the mod-2 reduc-
tion of a`( f ). If f corresponds to an elliptic curve E (up to isogeny) then ρ f is the representation ρE,2

(up to semisimplification) discussed in Section 2.
Fixing a prime of Q above 2, we consider the corresponding decomposition group of GQ, which one

can identify with the absolute Galois group GQ2 = Gal(Q2/Q2) of the local field Q2. The following
theorem relates the shape of the local representation ρ f,2 := ρ f |GQ2

to the invertibility of a2( f ). In the
statement and the proof, Qp2 refers to the unique unramified degree-2 extension of Qp.

Theorem 11 (Deligne, Fontaine, Edixhoven, Serre). One of the following holds.

(i) ρ f,2 is reducible, in which case f is ordinary, and

ρ f,2 ∼

(
λ−1
∗

0 λ

)
,

where λ : GQ2 → F
×

2 is the unramified character sending Frob2 to a2( f ).
Moreover ρ f,2 is at most peu wildly ramified in the sense of Serre.6

(ii) ρ f,2 is irreducible, in which case f is supersingular. In this case, ρ f,2 is the induction of a character
of GQ4 (the second fundamental character) and is therefore at most tamely ramified.

Proof. Write p in place of 2 to avoid confusion with weight 2. For the shape of ρ f,p, see Edixhoven
[10, Theorems 2.5 and 2.6]. In the ordinary case, since f has level prime to p and weight 2, ρ f,p is
finite at p: it arises from a finite flat group scheme over Zp (the p-torsion of a certain abelian variety
of GL2-type), forcing ρ f,p to be at most peu wildly ramified [10, Proposition 8.2]. In the supersingular
case, ρ f,2 is at most tamely ramified, by [31, Proposition 4]; for the description of ρ f,p as the induction
of the second fundamental character of GQp2 , see [33, §2.2]. �

4. Mod-2 dihedral representations appearing in weight 2

Before proving Theorem 2, we state an analogous theorem for cuspforms of weight 2: see Theorem 12
below. As many of the arguments are identical, the two theorems will be proved together in Section 5.

6An extension M/Qp is at most peu wildly ramified if M = M tr(α
1/p
1 , . . . , α

1/p
d ), where M tr/Qp is the at most tamely

ramified subextension of M, and the αi can be taken to be units in M tr. If M is still an elementary p-extension of M tr but at
least one of the αi must be a nonunit, then M is très wildly ramified. See [33, 2.4.ii]. A representation of Gal(Qp/Qp) as usual
inherits the ramification properties of the fixed field of its kernel.
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For N an odd squarefree positive integer, we study the distribution of generalized T2-eigenvalues
on S2(00(N ), F2)

new. Write m(N ) for the dimension of this space. For α ∈ F2, write m(N , α) for
the dimension of the generalized kernel of T2−α on this space (i.e., the dimension of the generalized
eigenspace corresponding to T2-eigenvalue α). Let mord(N ) := m(N ) − m(N , 0), the dimension of
the ordinary subspace. Our aim will be to give lower bounds on mord(N ), m(N , 1), and m(N , 0) by
enumerating dihedral forms with multiplicities. Note that, for squarefree N, forms defined over F2 will
be either dihedral or reducible (that is, the analog of Proposition 1 holds).

To this end, write S2(N ) := S2(00(N ), F2)
new and let T2(N ) := T2(N , F2)

new be the shallow Hecke
algebra acting on S2(N ). In other words, T2(N ) is the (commutative) F2-algebra generated inside
End

F2
(S2(N )) by the action of all the Hecke operators Tn with n prime to 2N. Then T2(N ) is a semilocal

artinian ring whose maximal ideals m correspond to mod-2 Hecke eigensystems appearing in S2(N ). For
` prime to 2N, let a`(m) ∈ F2 be the T`-eigenvalue corresponding to m; note that m is generated by the
T` − a`(m) for ` - 2N. By Serre reciprocity (that is, Serre’s conjecture [33], now known by work of
Khare and Wintenberger [16; 17], Kisin [20], and Dieulefait [9]), the maximal ideals m also correspond
to semisimple Galois representations ρm :GQ,2N→ SL2(F2) that are at most peu wildly ramified at 2. The
correspondence is codified by the Eichler–Shimura relation a`(m)= trρm(Frob`). Theorem 11 implies
that, given m, one can determine whether a2(m) is 0 or 1; otherwise a2(m) is only defined up to inverse.7

We decompose T2(N ) as a product of localizations at its maximal ideals, and correspondingly decom-
pose S2(N ) into generalized m-eigenspaces S2(N )m:

T2(N )=
∏
m

T2(N )m, S2(N )=
⊕
m

S2(N )m.

Note that if m⊂T2(N ) is a maximal ideal, then the eigenspace S2(N )[m] is nonzero, so that the dimension
of the generalized eigenspace S2(N )m is at least 1.

We say that a maximal ideal m of T2(N ) is reducible, dihedral, exceptional, or big-image if ρm has
the corresponding property. Similarly, we say that m is supersingular or ordinary if ρm is so at 2.

We determine the fields K for which there exist K -dihedral m occurring in T2(N ) for N prime and
how many such m there are (Theorem 12 below). In Section 6, we study the multiplicity of S2(N )m in
each case (Conjecture 13 and Proposition 14).

Theorem 12. Let N be an odd prime, and m⊂ T2(N ) a maximal ideal.

(i) If m is dihedral, then it is either Q(
√

N )-dihedral or Q(
√
−N )-dihedral.

(ii) Ordinary dihedrals: For K = Q(
√
±N ), there are exactly 1

2(h(K )
odd
− 1) ordinary K -dihedral

maximal ideals in T2(N ). Of these, 1
2(h(K )

odd,2-split
− 1) have a2(m)= 1.

7Note that a2(m) is not in general the trace of a Frobenius element at 2 of the ρm corresponding to m (indeed, ρm may
be ramified at 2). Therefore a2(m) is not a priori determined by m. In fact, a2(m) may not even be defined over the field of
definition of ρm. This happens, for example, in level 257 for the Q(

√
257 )-dihedral Galois orbit of forms.
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(iii) Supersingular dihedrals:

(a) If m is supersingular K -dihedral, then either N ≡ 3 mod 8 and K =Q(
√
−N ), or N ≡ 5 mod 8

and K =Q(
√

N ).
(b) Let N ≡ 3 mod 8 and K = Q(

√
−N ). If N > 3, then there are exactly h(K ) supersingular

maximal ideals of T2(N ).
(c) Let N ≡ 5 mod 8 and K =Q(

√
N ). If u(K )≡ 1 mod 2OK , then there are h(K ) supersingular

maximal ideals of T2(N ); otherwise, there are none.

(iv) Reducibles: If N ≡ 1 mod 8, then there is one reducible maximal ideal of T2(N ), generated by T`
for every prime ` - 2N ; otherwise, there are none.

Note that h(Q(
√

N )) is always odd, and h(Q(
√
−N )) is even only for N ≡ 1 mod 4. Note also that

a prime p above 2 of K = Q(
√
±N ) has order 1 or 2 in the class group unless N ≡ ε mod 8 and

K =Q(
√
εN ) for ε =±1, so the 2-split condition is vacuous outside those two cases.

5. Proofs of theorems

We prove the various parts of Theorems 2 and 12 in parallel. We then adapt the ideas to recover the
theorems of Hadano (Theorem 3) and Kida (Theorem 4).

5.1. Proof of part (i). Suppose that f ∈ S2(N ) is a K -dihedral modular form for some quadratic exten-
sion K of Q (corresponding to an elliptic curve for Theorem 2 or to a maximal ideal of the Hecke algebra
for Theorem 12). Since ρ f factors through an extension of Q unramified outside of 2 and N, K must be
one of the following:

Q(
√

N ), Q(
√
−N ), Q(

√
−1 ), Q(

√
2 ), Q(

√
−2 ), Q(

√
2N ), Q(

√
−2N ).

If K =Q(
√
±2 ) or Q(

√
±2N ), then K is très wildly ramified at 2 [33, §2.6, Exemple], so no modular

form of weight 2 (and in particular no elliptic curve) can be K -dihedral (Theorem 11). If K =Q(
√
−1 ),

then we are in the first scenario of Section 3.3, and Lemma 9 guarantees that a K -dihedral representation
cannot come from a 00(N )-modular form. Thus K =Q(

√
±N ), as claimed.

5.2. Proof of part (ii). Suppose K = Q(
√
±N ) and f ∈ S2(N ) is a K -dihedral ordinary form, with

ρ = ρ f = IndQ
K ψ for some character ψ of G K ramified only at primes above 2 (Section 3.3.2). Write

H = H(K ) and p= p(K ). Let L be the fixed field of kerψ . Since det ρ = 1, by Lemma 6 the extension
L/Q is Galois. Choose a prime P of L above p, and write ψ2 for the restriction of ψ to Gal(LP/Kp).

We first show that ψ is in fact unramified at 2, and hence will factor through H odd, the maximal odd-
degree subextension of H. By Corollary 10 and Table 1, ψ is unramified in all cases except possibly
when 2 is inert in K. In that case, ρ f,2 = IndQ2

Kp
ψ2, so by 3.1.1(ii) we know that ψ2 =

σ2ψ2 for σ2 a
generator of Gal(Kp/Q2). In this case, Theorem 11(i) tells us that ψ2 is unramified above 2, as then is ψ .
In fact, the determinant condition further forces σ2ψ2 = ψ

−1
2 , which implies ψ2 = 1 because we are in

characteristic 2.
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Next, from Theorem 11(i), the condition a2( f )= 1 is equivalent to the condition ψ2= 1, which exactly
means that ψ factors through H odd,2-split, the maximal odd subextension of H over K in which 2 splits
completely.

To complete the proof of Theorem 2(ii), we observe that [H odd,2-split
: K ] = h(K )odd/#〈p〉. If ρ comes

from a K -dihedral elliptic curve, then it has image D3, so ψ must have order 3. So a K -dihedral elliptic
curve of conductor N is only possible if 3 divides h(K )odd/#〈p〉, or equivalently h(K )/#〈p〉.

To complete the proof of Theorem 12(ii), we recall that in general, IndQ
K ψ = IndQ

K ψ
′ if and only if

ψ = ψ ′ or σψ = ψ ′ for σ a generator of Gal(K/Q). In our unit-determinant case, σψ = ψ−1. Therefore
there are 1

2(h(K )
odd
−1) distinct ordinary K -dihedral ρ, as claimed. The a2= 1 condition works similarly.

5.3. Proof of part (iii). Suppose that K = Q(
√
±N ) and that f ∈ S2(N ) is a K -dihedral form with

ρ = ρ f = IndQ
K ψ for some character ψ of G K ramified only at primes above 2. Maintain the notation H,

p, σ , ρ2 as above. As in the second paragraph of Section 5.2, ψ does not factor through H (or else ρ2

would be reducible, contradicting Theorem 11). Therefore ψ must be a character of Cl(K , a) for some
ideal a of K divisible only by primes above 2. By Corollary 8, a = (2) and either N ≡ 3 mod 8 and
K =Q(

√
−N ), or N ≡ 5 mod 8 and K =Q(

√
N ).

Now suppose we are in one of these two cases. Since σψ = ψ−1, the character σψ will also factor
through H(K , (2)) and not through H. This gives exactly 1

2(h(K , (2))− h(K )) representations, and
hence maximal ideals of T2(N ).

The formulations in part (b) of Theorem 12 and part (c) of both theorems come from analyzing the
sequence (3-3) from the proof of Lemma 7. For N congruent to 3 modulo 8, we have K =Q(

√
−N ), so

OK =

{
{±1} if N > 3,
{±1,±ω,±ω2

} if N = 3,

for ω a cube root of unity in Q(
√
−3). Since (2) is inert in K, we have OK /(2) = F4. Therefore, for

N > 3 (still congruent to 3 modulo 8), sequence (3-3) becomes

{±1} → F×4 → H(K , (2))→ H(K )→ 1,

so that h(K , (2)) = 3h(K ). For N = 3, the global units exactly cancel out the mod-(2) units, so
that h(K , (2)) = h(K ). For N congruent to 5 modulo 8, we still have OK /(2) = F4, but this time
OK = {±1}× uZ for some fundamental unit u = u(K ), and therefore we similarly have the two cases

h(K , (2))=
{

3h(K ) if u maps to 1 in (OK /(2))×,
h(K ) otherwise.

5.4. Proof of part (iv). If N 6≡ 1 mod 8, then 2 is not an Eisenstein prime for N (see Mazur [22] or
Mazur and Serre [23]), so there are no cuspforms in S2(N ,Z) congruent to the Eisenstein series E2,N

modulo 2, which carries the unique reducible maximal ideal in squarefree level. In particular, there are
no rational newforms whose associated mod-2 Galois representation is reducible.

This completes the proof of Theorem 2 and Theorem 12.
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5.5. Proof of Theorem 4. By Theorem 12(ii), the condition 3 - h(Q(
√
±N )) rules out the existence of

an ordinary elliptic curve of conductor N. For a supersingular elliptic curve, with notation as in the proof
of Theorem 12(iii), K =Q(

√
(−1)(N−1)/2 N ) and ψ is a nontrivial order-3 character of H(K , (2)); this

is ruled out by assuming that 3 - h(K , (2)). This completes the proof of Theorem 4.

5.6. Proof of Theorem 3. We now change notation to address Theorem 3. Let N be a prime such that
3 - h(K ) for K =Q(

√
±N ),Q(

√
±2N ), and let E be an elliptic curve of conductor 2N. Let f ∈ S2(2N )

be the corresponding modular form and let m⊆T2(2N ) be the corresponding maximal ideal. Since E has
multiplicative reduction at 2, f is ordinary and the conclusion of Theorem 11(i) holds. By Proposition 1,
m is either reducible or ordinary dihedral.

In the reducible case, m is an Eisenstein ideal; by the proof of [39, Theorem 6.1], the difference of
the cusps of X0(2N ) corresponding to 1, 1/2 ∈ P1(Q) must have even order in the Jacobian. By [39,
Theorem 1.3] this order is the numerator of (N 2

− 1)/8, forcing N ≡ 1, 7 mod 8.
In the ordinary dihedral case, by Lemma 9 we must be in the second scenario of Section 3.3; that

is, ρ f = IndQ
K ψ where K is one of Q(

√
±N ) or Q(

√
±2N ) and ψ is an order-3 character of G K

ramified only at primes above 2. As in Section 5.2, we see that ψ is also unramified at 2 and so factors
through Cl(K ); however, this contradicts the hypothesis that 3 - h(K ).

This completes the proof of Theorem 3.

6. Multiplicities of mod-2 dihedral cuspforms in weight 2

The following conjecture8 complements Theorem 12. Note that the fact that m⊂ T2(N ) is a maximal
ideal automatically implies that dim S2(N )m ≥ 1.

Conjecture 13. Let N be an odd prime and m a maximal ideal of T2(N ).

(i) Suppose N ≡ 1 mod 8.

(a) If m is Q(
√

N )-dihedral, then dim S2(N )m ≥ 4.
(b) If m is Q(

√
−N )-dihedral, then dim S2(N )m ≥ h(−N )even.

(c) If m is reducible, then dim S2(N )m ≥ 1
2(h(−N )even

− 2).

(ii) Suppose N ≡ 5 mod 8.

(a) If m is ordinary Q(
√

N )-dihedral, then dim S2(N )m ≥ 4.
(b) If m is Q(

√
−N )-dihedral, then dim S2(N )m ≥ 2.

(iii) Suppose N ≡ 3 mod 4 and K =Q(
√
±N ).

(a) If m is ordinary K -dihedral, then dim S2(N )m ≥ 2.

In the case that N ≡ 9 mod 16, part (i c) has been proved by Calegari and Emerton [6, Theorem 1.1]:
indeed, they establish that dim S2(N )m = 1

2(h(Q(
√
−N ))even

− 2) for the unique reducible m in this case.

Proposition 14. Part (iii) of Conjecture 13 is true when K =Q(
√
−N ).

8Added in proof: Frank Calegari reports that some progress towards these conjectures has been made by Noah Taylor.
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Proof. If K =Q(
√
−N ), and N ≡ 3 mod 4 is a prime, and ε= εK , there are exactly 1

2(h(K )−1) distinct
K -dihedral forms in S1(N , ε,C) corresponding to inductions of characters ψ :Gal(H(K )/K )→C× (see,
for example, [32, §8.1.I] for details). Since h(K ) is odd, all of these reduce to distinct representations
modulo 2, so that S1(N , εK , F2)

K -dih splits as a Hecke module into a direct sum of 1
2(h(K )−1) nonisomor-

phic one-dimensional lines spanned by ordinary forms. The two maps S1(01(N ), F2) ↪→ S2(01(N ), F2)

given by f 7→ f 2 and f 7→ E1,ε f preserve Hecke eigenspaces (the former because we are in char-
acteristic 2; the latter because E1,ε in characteristic zero lifts the Hasse invariant9) and are linearly
independent [11, Proposition 4.4]. Since ε is quadratic, we obtain a Hecke equivariant embedding
(S1(N , ε, F2)

K -dih)2 ↪→ S2(N , F2) that doubles the eigenspace. �

7. Comparison with experimental results

To conclude, we compare our results to the empirical assertions about the mod-2 reduction of T2 acting
on S2(00(N ),Q) for N prime from the introduction.

• For N ≡ 3 mod 8, the eigenvalue 0 always occurs if N > 3.

• For N ≡ 1, 3, 5 mod 8, the eigenvalue 1 always occurs if N > 163.

• For N ≡ 1 mod 8, the eigenvalue 0 occurs with probability 16.8%.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs with probability 42.2%.

• For N ≡ 7 mod 8, the eigenvalue 0 occurs with probability 17.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs with probability 47.9%.

Of these, the first assertion is implied by part (iii b) of Theorem 12 and the second assertion is implied
by part (ii) of Theorem 12. Combining the other parts of Theorem 12 with the Cohen–Lenstra heuristics
yields the following statements.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs for “dihedral reasons” when u(N )≡ 1 mod 2O(N ). The
three possible nonzero reductions of u(N ) mod 2O(N ) being equally likely, this should occur with
probability 1

3 = 33.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs for “dihedral reasons” when h(Q(
√
−N ))odd,2-split > 1

or h(Q(
√

N )) > 1. Each of these is modeled by the probability that a random finite abelian group,
modulo the subgroup generated by a random element, yields a nontrivial quotient; this probability is

1−
∏
p>2

∞∏
j=1

(
1−

1
p j+1

)
= 0.2455 . . . .

Since the two events are presumed to be independent, at least one should occur with probability
43.1%.

9See user Electric Penguin’s answer to MathOverflow question 228497.

https://mathoverflow.net/a/228596/86179
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N mod 8 excess multiplicity of 0 excess multiplicity of 1

1 16.4% 43.8%
3 53.0% 45.7%
5 22.5% 45.8%
7 17.3% 39.0%

Table 2. Frequency of unexplained eigenvalue multiplicity in the mod-2 reduction of T2 on S2(00(N ),Q)

for N < 200000 prime.

Removing these cases leaves the following occurrence of eigenvalues arising from exceptional or
big-image maximal ideals.

• For N ≡ 1 mod 8, the eigenvalue 0 occurs with probability 16.8%.

• For N ≡ 5 mod 8, the eigenvalue 0 occurs with probability 13.3%.

• For N ≡ 7 mod 8, the eigenvalue 0 occurs with probability 17.3%.

• For N ≡ 7 mod 8, the eigenvalue 1 occurs with probability 8.4%.

It would of course be desirable to explain these probabilities also. This will require combining some
analysis of the corresponding representations with Wood’s nonabelian analog of the Cohen–Lenstra
heuristics [38], which for a given pair of finite groups G,G ′ predicts the probability that a quadratic
number field K admits a Galois G-extension L for which L/Q is a Galois G ′-extension.

For N < 200000 prime, we also checked whether Theorem 12 and Conjecture 13 together give a sharp
lower bound on the eigenvalue multiplicities of 0 and 1. For each residue mod 8, the percentage of cases
where this fails is shown in Table 2.

Note that these percentages include both uncounted (exceptional or big-image) maximal ideals and
nonsharpness in Conjecture 13. The preceding calculation suggests that excess multiplicity of 0 for
N ≡ 1, 7 mod 8 arises almost entirely from uncounted maximal ideals, but in other cases Conjecture 13
may need to be refined.
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